
Coursework Foundations of AI 1

COMP6231: Search Heuristics for Isolation
Julio Cesar Aguilar Jimenez1,2,3

1School of Electronics and Computer Science, University of Southampton
2MSc. Artificial Intelligence, ID. 29312175
3Author email: jcaj1n17@soton.ac.uk

January 9, 2018

The results of applying 7 different heuristics using alpha-beta pruning with iterative deep-
ening against different opponents that use different algorithms in the ”Isolation” game is
presented. The evaluation functions proposed include simple approaches, use of weights, dy-
namic weights, aggressive behaviour and strategy changes through the game, showing these
last a better performance.
Galileo: ‘You cannot teach a man anything; you can only help him discover it in himself’

1. INTRODUCTION
A heuristic is a technique designed for solving a
problem more quickly when classic methods are too
slow, or for finding an approximate solution when
classic methods fail to find any exact solution.

Isolation is a deterministic, two-player game of
perfect information in which the players alternate
turns moving a single piece from one cell to another
on a board.

In this paper we will present different heuristics
that will work as evaluation functions in order to
calculate a win condition for our player or agent.

The Agent must compete against other agent
called Archenemy who is highly competent, this
two players will play several matches against op-
ponents that use the algorithms of minimax, alpha
beta pruning, and simple heuristics. This will al-
low us to know how well the new heuristics are
performing.

2. APPROACH
2.1. Game
In this Isolation version, each agent is restricted
to L-shaped movements (like a knight in chess) on
a rectangular (chess) grid of size 7× 7.

The players can move to any open cell on the
board that is 2-rows and 1-column or 2-columns
and 1-row away from their current position on the

board. Whenever either player occupies a cell,
that cell becomes blocked for the remainder of
the game. The first player with no remaining le-
gal moves loses, and the opponent is declared the
winner.

Movements are blocked at the edges of the board,
however, the player can jump blocked or occupied
spaces like a knight in chess.

To avoid misinterpretation of the results, the ini-
tial state is random, i.e., the positions of both play-
ers are random and the number of games will be
even in this way both players will have the oppor-
tunity to be the first or second to move the same
amount of times.

Below the matrices indicate a possible initial
and final state for the Isolation game, where the
white knight is the winner due to the next to move
is the black knight and it has not available moves
anymore.

Initial State

• • • • M • •

• • • • • • •

• • • • m • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

→

Final State

• • • M - • •

• - - - • - •

- - - • - - •

- - - - - • -
- - - - - - •

- - - - - - •

• • m - • • •

Coursework Foundations of AI 2

2.2. Opponents
The efficiency of the heuristics is tested as a com-
petition against 7 opponents. 3 opponents use the
minimax algorithm with a depth of 3, 3 α − β
pruning with depth of 5, and a random opponent
that only chooses random positions. Udacity offer
sample players to test your Agent. [4]

As shown in the Figure 2.1, each opponent uses
null, open and improved simple heuristics pre-
sented in Sections 2.6.1, 2.6.2, 2.6.3.

Opponents

Minimax α-β Random

Depth = 3

Null

Open

Improved

Depth = 5

Null

Open

Improved

Fig. 2.1. Opponents to test the heuristics

2.3. Agent and Archenemy
Both will use the α − β pruning algorithm with
iterative deepening. Our player will use the differ-
ent heuristics presented in the Section 2.7 and the
Archenemy will always use the improved heuristic
as shown in Figure 2.2. The objective is to surpass
this player.

Players

Our Player Archenemy

Simple

Weighted

Moves to
Board
.....

Improved

Fig. 2.2. Players to test in the competition

2.4. Language
The Udacity online platform [1], has a graphical
interface in HTML5 and JavaScript languages to

test this game, it contains the board and a text field
to put the game’s movement history and observe
the behaviour and result. [2].

Additionally Udacity has an API [3] for the con-
trol of the board written in Python, so the Python
language was selected for the creation of the differ-
ent classes and methods.

2.5. Algorithms
2.5.1. Minimax (MM)
Minimax is a backtracking algorithm and it has 2
players. The maximiser tries to get the highest
score possible while the minimiser tries to get the
lowest.

In Figure 2.3, assuming 4 final states and being
maximiser who moves first, we can see that by
taking the left node, minimiser will take the min-
imum value min(3, 5) so 3 will be the final value
of that node.

On the right side minimiser will decide
min(2, 9), so the value of the node is 2.

Since maximiser will take the highest value
max(3, 2), the optimal move is left node with 3.

3

3 5

2

2 9

Fig. 2.3. Minimax example

2.5.2. Alpha-Beta Pruning
Alpha-Beta Pruning is an optimisation tech-
nique for minimax algorithm. It cuts off branches
in the game tree which need not be searched be-
cause there already exists a better move available.

It passes 2 extra parameters in the minimax func-
tion, namely α and β. The initial values of alpha
and beta are [α = −∞, β = ∞] and the condition
to prune is β <= α. α and β are the best values
that the maximiser and minimiser currently can
guarantee at that level or above respectively.

In Figure 2.4, assuming that maximiser moves
first, then minimiser, then maximiser will decide
between 3 and 5, α will evaluate max(3,−∞) and
then since the condition β(∞) <= α is false it will
continue with max(3, 5), so 5 will be the value of D
and pass it to B. At B, β = min(−∞, 5) so β = 5.

Coursework Foundations of AI 3

At E (α = −∞, β = 5) , going to the left α = 6
and as β(5) <= α(6) is true, it breaks returning 6
to B, so β = min(5, 6) and 5 is returned to A .

At C [α = 5, β = ∞] and after repeating the
process in F we have β = 2 and since β(2) <= α(5),
it prunes the entire G, returning 2 to A. Since
max(5, 2) = 5, then the optimal value is 5 .

A

B

D

3 5

5

5

E

6

6

5

C

F

1 2

2

2

G

Fig. 2.4. Alpha-Beta pruning example

2.6. Heuristics of Opponents
Minimax picks the least or greatest score each
round, the next step is to compute scoring heuris-
tic that maximise our player’s moves and minimise
the opponent’s moves leading to a win condition for
our player.

The time spent in the evaluation function re-
duces time that can be spent exploring the game
tree. For this reason, it’s generally considered to
keep the evaluation function simple and within lin-
ear or constant time. Opponents use the following
3 evaluation functions.

2.6.1. Null Score
This heuristic presumes no knowledge for non-
terminal states, and returns 0 for all other states.

H(t) =

−∞, if lose

∞, if win

0, any other state

(2.1)

2.6.2. Open Move Score
This heuristic evaluates the number of moves open
n for the agent, the values for win and lose state
are the same as in Eq. (2.1).

H(t) = # legalMoves (2.2)

2.6.3. Improved Score
This heuristic returns the difference between
the movements of the player and opponent, the
win and lose state values are the same as in
Eq. (2.1). In Eq. (2.3) p = #playerMoves and
o = #opponentMoves.

H(t) = p− o (2.3)

2.6.4. Random Player
The random player do not have a defined heuris-
tic, it simply choose a random movement from the
list of available movements, in case it has not, it re-
turns an invalid movement indicating the lose state
and the end of the game.

2.7. Agent Heuristics
The win and lose states return the same values for
every heuristic as in the Eq. (2.1), i.e., ∞, −∞
respectively.

2.7.1. Simple
This is the simplest heuristic and its behaviour
is the same as in the Section 2.6.3, a subtraction
between de agent moves and the opponent. It was
created for testing purposes, to observe how the
algorithms of minimax, alpha beta pruning and it-
erative deepening performed.

2.7.2. Weighted
This is a modified version of Simple Score 2.7.1
based on weights, where our movements will have
a greater weight than the opponent’s, i.e., for our
agent having more moves is more important than
having less moves for the opponent.

H(t) = (p× 2)− o (2.4)

2.7.3. Moves to Board
Now to our Weighted model we will add a sense of
time, increasing the importance of the board places
through the game, in this way the importance of
the movements changes. In Eq. (2.5), w = p × 2
and m = currentMoves/boardSize.

H(t) = (w ×m)− o (2.5)

2.7.4. Weighted with Board
For this approach we will take the remaining
available places (b) and add weights to the move-
ments of the agent and the opponent, prioritising
our movements.

H(t) = (p× 3)− (o× 2) + (b× 1) (2.6)

Coursework Foundations of AI 4

2.7.5. Defensive to Offensive
The next step is to play defensively prioritising
our available movements during the first half of the
game, then play offensively trying to exhaust the
possible moves for the opponent, for this we use the
value of m previously seen in the Section 2.7.3.

H(t) =

{
(p× 2)− o, if m ≤ 0.5

p− (o× 2), if m > 0.5
(2.7)

2.7.6. Offensive to Defensive
This approach is similar to the one in the Section
2.7.5, but inversely, in the first half we will play
offensively and in the second defensively.

H(t) =

 p− (o× 2), if m ≤ 0.5

(p× 2)− o, if m > 0.5
(2.8)

2.7.7. Blocking the Opponent
Finally, this heuristic is completely aggressive and
seeks to hunt the opponent. To carry it out we need
to create a list of possible moves for our agent (Np)
and the opponent (No), then create an array of
those movements that are equal and use them in
our calculation.

Ai, j =

Na∑
i=1

No∑
j=1

if (pi == oj), then pi

H(t) = p− (o× 2) + size(A)

(2.9)

3. RESULTS
The application was tested on a MacBook Pro (13-
inch, 2017), with a 2.3 GHz Intel Core i5 processor,
8 GB 2133 MHz LPDDR3 memory and solid state
hard drive.

In the Figures 3.1, 3.2 we can see that the high-
est index of victories is against the opponent Ran-
dom, which indicates good behaviour.

As the game progresses, the curve of victories de-
creases, which is to be expected because opponents
propose a better performance with the use of the
algorithms minimax and α − β, pruning being
those that use the heuristic of improved the most
complicated.

The Figure 3.3 presents the overall percentage of
victories, where it can be appreciated that those
who have different strategies at different moments
of the game have a better performance.

RAN MM
N

MM
O

MM
I

AB
N

AB
O

AB
I

Opponents

8

10

12

14

16

18

20

W

in
s

Simple
Weighted
Moves to Board
Weighted with Board

Fig. 3.1. Number of victories against opponents
using the first 4 heuristics

RAN MM
N

MM
O

MM
I

AB
N

AB
O

AB
I

Opponents

12

13

14

15

16

17

18

19

20

W

in
s

Deffensive to Offensive
Offensive to Defensive
Blocking the Opponent
Archenemy

Fig. 3.2. Number of victories against opponents
using the last 3 heuristics and the archenemy
score

S W MTB WWB DTO OTD BTO

Heuristic

70

72

74

76

78

80

82

84

86

%
 W

in

Player
Archenemy

Fig. 3.3. Overall win percentage

4. CONCLUSIONS
The heuristics that present dynamic weights, this
is that their value changes depending on the state

Coursework Foundations of AI 5

of the game promote a more regular behaviour.

The use of white spaces in the evaluation function
has the lowest performance, however, has the best
score against the opponent minimax improved.

The use of heuristics with changes of strategy
in different moments of the game or with aggressive
behaviorus are more efficient.

α− β pruning with iterative deepening has a bet-
ter performance than those that do not have it since
its percentage of victories for all cases is above 50%,
therefore the Archenemy has turned out to be an
extremely complicated adversary.

5. LIMITATIONS AND WEAKNESSES
Although Python has become a powerful and rela-
tively simple language to use, it still has the disad-
vantage of being an interpreted language, so imple-
mentation in a compiled language as C++ would
lead to faster performance.

Since we work with an external API for the man-
agement of the board, it keeps fixed constants for its
size, preventing testing the behaviour of the heuris-
tics in a way that increases the size of the board.

The focus on adversarial games is clearly win-
ning, however the time needed to carry it out and
the number of nodes expanded by the algorithms
can be relevant, the code is made to extract these
values however in this paper these statistics are not
presented.

The heuristics that present different behaviours
over time proved to be more effective, so the im-
plementation of one that had 3 or 4 strategies at
different moments of the game would be valuable
to prove, however it was not done in this work.

REFERENCES
1. Udacity. (2011, Jan.) Search1-blind.pptx. [Online]. Available:

https://eu.udacity.com
2. C. Oakman. (2013, Jan.) chessboard.js. [Online]. Available:

http://chessboardjs.com/
3. Udacity. (2017, Apr.) Isolation. [Online]. Available: https:

//github.com/udacity/AIND-Isolation/tree/master/isolation
4. ——. (2017, Apr.) sample players. [Online]. Avail-

able: https://github.com/udacity/AIND-Isolation/blob/
master/sample_players.py

6. APPENDIX 1 - CONSOLE OUTPUTS

Connected to pydev debugger (build 172.4343.14)
					2	
			1			

| | | | | | | |
| | | | | | | |

True
[(0, 2), (0, 4), (1, 1), (1, 5), (3, 1), (3, 5), (4, 2),
(4, 4)]

Old state:
					2	
			1			

New state:
					2	
	1					
			-			

Winner: <__main__.RandomPlayer object at 0x10c7c3940>
Outcome: illegal move
| - | - | - | 2 | | - | - |
| - | - | - | 1 | - | - | |
-	-	-	-	-	-	
-	-	-	-	-	-	
-		-	-	-	-	
		-	-			-

Move history:
[[4, 2], [2, 4], [3, 0], [4, 3], [1, 1], [2, 2], [3, 2],
[3, 4], [4, 0], [5, 3], [5, 2], [4, 5], [3, 3], [6, 6],
[1, 2], [5, 4], [0, 0], [3, 5], [2, 1], [1, 4], [0, 2],
[0, 6], [1, 0], [2, 5], [3, 1], [4, 4], [5, 0], [6, 3],
[6, 2], [5, 5], [4, 1], [3, 6], [2, 0], [1, 5], [0, 1],
[0, 3], [1, 3], [-1, -1]]

Evaluating: Archenemy

Playing Matches:

Match 1: Archenemy vs Random Result: 19 to
1

Match 2: Archenemy vs MM_Null Result: 18 to
2
Match 3: Archenemy vs MM_Open Result: 14 to

6
Match 4: Archenemy vs MM_Improved Result: 13 to

7
Match 5: Archenemy vs AB_Null Result: 18 to

2
Match 6: Archenemy vs AB_Open Result: 14 to

6
Match 7: Archenemy vs AB_Improved Result: 14 to

6

Results:

Archenemy 78.57%

Evaluating: Player

https://eu.udacity.com
http://chessboardjs.com/
https://github.com/udacity/AIND-Isolation/tree/master/isolation
https://github.com/udacity/AIND-Isolation/tree/master/isolation
https://github.com/udacity/AIND-Isolation/blob/master/sample_players.py
https://github.com/udacity/AIND-Isolation/blob/master/sample_players.py

Coursework Foundations of AI 6

Playing Matches:

Match 1: Player vs Random Result: 19 to 1
Match 2: Player vs MM_Null Result: 16 to 4
Match 3: Player vs MM_Open Result: 17 to 3
Match 4: Player vs MM_Improved Result: 16 to 4
Match 5: Player vs AB_Null Result: 18 to 2
Match 6: Player vs AB_Open Result: 13 to 7
Match 7: Player vs AB_Improved Result: 15 to 5

Results:

Player 81.43%

	Introduction
	Approach
	Game
	Opponents
	Agent and Archenemy
	Language
	Algorithms
	Minimax (MM)
	Alpha-Beta Pruning

	Heuristics of Opponents
	Null Score
	Open Move Score
	Improved Score
	Random Player

	Agent Heuristics
	Simple
	Weighted
	Moves to Board
	Weighted with Board
	Defensive to Offensive
	Offensive to Defensive
	Blocking the Opponent

	Results
	Conclusions
	Limitations and weaknesses
	Appendix 1 - Console Outputs

