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1. ABSTRACT
In this paper we present the design of Agent 7, the rea-

sons behind its model and an analysis of the results ob-
tained in the ANAC internal competition, demonstrating a
great performance in the different domains which ranked it
at the first place of the University competition.

2. INTRODUCTION
An intelligent agent (IA) is an autonomous entity which

observes through sensors and acts upon an environment. It
directs its activity towards achieving goals.

In this paper we will explain how a time-dependent, ran-
dom and frequency-based bidding with lower limit of conces-

sion agent was developed with the purpose of compete in a
multiparty negotiation tournament. The Agent 7 is able
to obtain a high utility while seeking to benefit all parties
involved in different domain sizes.

3. STRATEGY
Agent 7 has a negotiation strategy in 4 steps. First it

calculates the table of disutility, then compute the value
for the threshold function.

As a third step, perform a combined modelling of the
opponent and finally proceed to generate the bid.

3.1 Disutility Table
Agent 7 derives a relative utility matrix according to our

agent’s utility space as suggested by the Atlas3 paper.[1]
This allows us to iterate through issues and values, and add
issues to our bid only if they do not take our agent’s utility
below our disutility threshold function T (t).

We can consider a matrix of issues i1...in with their re-
spective values for each issue vik, 1 ... vik, n.
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The disutility matrix for Agent 7 is created at the start
of the negotiation using Equation (1), and should not be
altered at any point following creation.

ui, j =
vi, j − argmax{vi}

argmax{vi}
× wi (1)

Where u is our disutility function for the corresponding
value (i, j), v is the value j for each issue i and w the weight
for that issue. To facilitate the comprehension, we will con-
sider 3 issues and 4 values as shown below.

Table 1: Disutility function calculation

i1, w = 0.5 i2, w = 0.4 i3, w = 0.1

v1
10 − 10

10

× 0.5 = 0

2 − 5

5

× 0.3 = −0.18

1 − 4

4

× 0.2 = −0.15

v2
8 − 10

10

× 0.5 = −0.1

3 − 5

5

× 0.3 = −0.12

4 − 4

4

× 0.2 = 0

v3
5 − 10

10

× 0.5 = −0.25

5 − 5

5

× 0.3 = 0

2 − 4

4

× 0.2 = −0.1

v4
2 − 10

10

× 0.5 = −0.4

5 − 5

5

× 0.3 = 0

3 − 4

4

× 0.2 = −0.05

This translation makes our bid generation algorithm runs
faster. By means of this method, computational complexity
is O(n), where n means the number of issues.

3.2 Threshold Function T(t)
The Threshold function T (t) plays a crucial role for the

good performance of the agents during the negotiation. Al-
most every agent in every paper studied uses a threshold

function.

Agent 7 uses time-dependent strategy. In time-dependent
strategy[2] a real number T (t) , called target utility, is com-
puted as Equation (2).

T (t) = α± t× β (2)

In which, t, α and β are time, the utility and the value to
control the concession speed of the agent, respectively. The
approach is similar to that used by agent Pars [2], but more
complex since it has not a Boulware behaviour.

Agent 7 sets α and β based on heuristics where the val-

ues were obtained through multiple tests against different
agents in the Genius environment, the function presents
a multilinear behaviour. The Expression (3) shows the α,
sign and β values for each time range.
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a) α = 1, − β = 0.4 if t ≤ 0.25
b) α = 0.9, + β = 0.4 if 0.25 < t ≤ 0.375
c) α = 0.95, − β = 0.4 if 0.375 < t ≤ 0.5
d) α = 0.9, − β = 1 if 0.5 < t ≤ 0.6
e) α = 0.8, + β = 2 if 0.6 < t ≤ 0.7
f) α = 1, − β = 3 if 0.7 < t ≤ 0.8
g) α = 0.7, + β = 1 if 0.8 < t ≤ 0.9
h) α = 0.8, − β = 6 if 0.9 < t ≤ 0.95
i) α = 0.5, + β = 4 if t > 0.95

(3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
(t

)

a
b
c
d
e
f
g
h
i

Figure 1: Utility Threshold Values

In the first half Agent 7 only makes bids above the 0.9
of the utility, then drops to 0.8 and goes up to 1 in 70% of
the time.

In 90%, fearing there will not be agreement, Agent 7
drastically lower the threshold to 0.5 in 95% of time. In the
final stretch will raise to 0.7, so the most stubborn agents
tend to accept offers and the resulting utility will not be
low.

3.3 Combined Opponent Model
Agent 7 is frequency-based modelling, each time an op-

ponent makes a bid, Agent 7 update the frequency table it
is holding for that opponent.

To explain this process, consider that after 20 offers the
frequency table of our opponents looks like Table 2.

Table 2: Opponents Frequency Table
Opp1 i1 i2 i3 Opp2 i1 i2 i3
v1 6 7 4 v1 0 16 12
v2 10 12 9 v2 0 3 6
v3 3 1 3 v3 20 1 1
v4 1 0 4 v4 0 0 1

Next, we need to generate a Ω (a random number from

a list) value, it would be useful to vary which opponent
was being conceded to most as Random Dancer [3]. The
Equation (4) shows how our models are combined.

CombinedModel = Ω×Opp1 + (1− Ω)×Opp2 (4)

It focuses our bids on a plane connecting the bid-spaces of
opponents, which should be very close to the Pareto frontier.

Table 3 shows how to calculate the combined model for
the first 3 values in i1 (assuming Ω = 0.5).

Table 3: Combined Opponent Model Table
i1 Res

v1 0.5× 6 + (1− 0.5) × 0 3
v2 0.5× 10 + (1− 0.5) × 0 5
v3 0.5× 3 + (1− 0.5) × 20 11.5

3.4 Bid Generation
To demonstrate the process we will use T (0.6) = 0.8.

First randomly sort our list of issues [i2, i1, i3] and initialise
the disutility of our bid cdu = 0.

As shown in Table 1 the lowest value is −0.18 and since
−0.18 ≤ (0.8 − 1) all values are possible. The next step is
generate a cumulative probability table using Table 3, to do
that we just take the values of the table and divided by the
number of bids 20 and the result will be added to the next
value.

Applying this for issue2 we have [v1 = 0.575, v2 = 0.95, v3 =
1, v4 = 1]. Then we generate a random number, it is 0.62,
and take the first value that is bigger than its, so we take
v2.

For issue1 the lowest disutility after 0 is 0.1, but since
(−0.12 +−0.1) > (0.8− 1), the only possible value is v1.

For issue3 there are 2 possible values (v2 = 0, v4 = 0.05),
the cumulative values will be [v2 = 0.75, v4 = 1]. The
random number is 0.26 and we take v2.

The bid is [i1v1, i2v2, i3v2] and the disutility will be
[−0.12+0+0]. The bid has a utility of 0.88 which is pretty
good and it is close to a bid that would be accepted by the
opponents due to the combined model.

4. ANALYSIS
Agent 7 was tested in a competition of 3 different do-

mains with other 35 opponents and 3 agents per negotiation.
Tables 4, 5, 6 show the results.

Table 4: Agreement in different Domains
Domain % Agree. No Agree. Agreements

D0 99.16 23 2708
D1 95.54 119 2550
D2 83.12 478 2354

Table 5: Pareto and Nash distances
Domain Av. Pareto Av. Nash

D0 0.0200 0.1310
D1 0.1117 0.2052
D2 0.2003 0.2518

Table 6: Utility in different Domains
Domain % Av. Utility

D0 86.97
D1 84.29
D2 70.32



4.1 Small Domain (Sportshal)
For the first domain D0, we can see that the number of

agreements and utility is quite high and Nash distance
is 0.131. These are very good results and indicate that most
of the negotiations reached the agreement in the first half
of the time or before reaching 80%. Due to our combined

model the Nash distance is very short. Figures 2, 3 illustrate
the aforementioned.
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Figure 2: Utility graph for D0
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Figure 3: Pareto and Nash distances for D0

4.2 Medium Domain (WindFarm)
For D1 the utility is above 80%, the Pareto and Nash

distances are small (1 and 2 tenths). We can infer looking
at Figures 4 and 5 that several of the negotiations in this
domain were completed in the final stretch, which leads to
less utility.

There are many negotiations that reach a utility of 1,
due to the Threshold function, it deceives the opponents

raising the utility in 60% of time. The Nash graph is more
scattered, the agents that have a random behaviour for the
generation of bids as Agent 7 in larger domains lead to this
type of behaviour.
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Figure 4: Utility graph for D1
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Figure 5: Pareto and Nash distances for D1

4.3 Large Domain (Politics)
The domain D2 is where our agent had a lower perfor-

mance, there was a considerable amount of no agreements

(∼ 500). However Agent 7 got the best Nash distance score
among all the agents for this domain.

A critical factor in large domains is time, if the modelling
and strategy of opponents are very complex, they cause the
agent to spend a lot of time performing the relevant calcu-

lations.

Another factor is the agents that tend to seek the greatest
utility for themselves and neglect the common wealth. Our
Agent 7 had problems negotiating with agents 2, 27 and
33. Although these agents had a greater utility, their Nash

distance is much higher than Agent 7, which corroborates
their selfish behaviour.

In Figures 6 and 7 we can see that although the utility
is more dispersed than the previous ones, the majority is
above 70%, the problem is the large number of 0’s. On the
other hand, the Nash distance is very similar to that of
D1, which reflects a coherent behaviour across the different



domains and looking for a benefit for all the parties involved.
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Figure 6: Utility graph for D2

0 500 1000 1500 2000 2500 3000

Negotiations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
is

ta
nc

e

Pareto
Nash

Figure 7: Pareto and Nash distances for D2

5. FURTHERWORK
One of the possible future challenges is to optimise the

Threshold function, make it intelligent and change the
minimum value for that bid it has received from opponents,
one value for each opponent.

The Frequency Table can also be subject to optimisa-

tion, we can add a weight to those bids that are made at the
beginning or in different strategic points that better model
the preferences of the opponents.

Ω can be improved, instead of a list of random values, it
can be the product of a function that adjusts both opponents

near the point of Nash or Pareto, this will give flexibility and
dynamism to our agent.
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