
1

IoT based Blockchain for Manufacturing Process
Monitoring and Logistics within an Organisation

Julio Aguilar Jimenez, Aswin Ramasubramanian, and Georgios Psimenos

Abstract—With the rise of the fourth industrial revolution,
there has been a dramatic change in the manufacturing indus-
tries, from the integration of cyber-physical systems and IIOT
for automation to the deployment of Artificial Intelligence sys-
tems. The concern over the secure monitoring of manufacturing
processes from the beginning to the point where the product
has reached the client continues to be a significant challenge
today. In this paper, we discuss the use of blockchain technology
in secure industrial process monitoring and tracking, within
a manufacturing enterprise. We also discuss secure tracking
of goods from the manufacturer until they reach the client’s
premises. The core objective of this paper is to introduce a
securely contained distributed ledger, accessible by particular
people within an organization, to track complex logistical pro-
cesses in a trustworthy manner. Relevant data is stored in a
blockchain to safeguard it against fraudulent manipulation. The
primary consensus method considered in this paper is Proof-of-
Authority (PoA) with Identity. In such as system, tampering with
blockchain data is impossible without revealing one’s identity to
the network. We herein present a prototype implementation of
this system, and discuss its characteristics.

Index Terms—Blockchain, manufacturing process, industry
4.0, proof-of-authority, logistics.

I. INTRODUCTION

Blockchain technology was introduced around a decade ago
as an innovative way to maintain a distributed database. A
blockchains decentralized structure and use of strong cryp-
tography, among other features, provides unsurpassed avail-
ability, transparency and trust. Although the most widely
known application of blockchains today is cryptocurrencies,
blockchain technology has vast potential to drive revolutionary
developments across countless fields. One field that is very
likely to benefit is manufacturing and industrial automation.

Conventional supply chains and manufacturing processes
are becoming incredibly complex and inefficient. It is in-
creasingly difficult to manage them using traditional methods,
and there is a significant lack of transparency. In the current
scenario, integration of cyber-physical systems and IoT into
process monitoring and logistics enable real time tracking
of materials, resource management and transport handling.
Going forwards, a blockchain can offer exactly what a modern
supply chain requires. Distributed consensus enables absolute
integrity and eliminates disputes while providing complete
transparency into the origins and chain of ownership of assets.
In a blockchain-powered supply chain, any individual can trace
products back to their source. Ideally, an entire products life-
cycle will be recorded in a blockchain, from the processing
steps in its production to the route it follows from the time it
leaves the factory to the time it reaches the consumer. Success

of a manufacturing organisation relies on factors which gives
value addition to the product. With the rapid growth in the
manufacturing industries, if a company supplies goods that are
trustworthy, in the right time, quality and place it can sustain
longer in the area. This implementation of blockchain in
manufacturing industry provides tracking, subsequent repairs
and change of ownership which are recorded throughout,
enabling full traceability of the product.

In this report, we are proposing a private blockchain-enabled
IoT platform for industrial automation and optimization of
supply chains. A software implementation/simulation of such
a platform is presented.

II. MOTIVATION

With ever-increasing competition in the field of smart man-
ufacturing and connected industries, businesses invest more in
the fields of IoT, AI and machine learning to optimize their
production system. Industry 4.0 incorporates many modern
technologies. This has paved the way for a more digitalized
network in the manufacturing sector, involving a huge amount
of data flow. Many industries want to achieve transparency
and inter-dependability, in terms of collaboration between
various departments of the organization, reliable sourcing of
information, product quality and standardization. Our intention
is to conceptualize and implement a secure way of recording
the processes involved in a manufacturing company from the
beginning to the end and provide easier traceability using IoT,
AI, and blockchain technology in the context of Industry 4.0.

III. GENERAL OVERVIEW OF THE IDEA

The idea is centered around establishing a secure private
blockchain which can keep track of the production process and
record each manufacturing step. Manufacturing is defined as
the process of converting raw materials into complete products
that meet the desired specification. There are several sequential
processes involved in the manufacturing of a product. Let
us consider a production facility; Each raw item is given a
unique product ID, order ID, and design requirements. These
are tagged on the item with RFID technology. Now a block
is created indicating that the raw material has entered the
production line. When the raw material reaches the production
line, either automated machines or the human operator scans
the item and validates the block. So, the first block is added
to the blockchain. Proof-of-Authority is used as the validation
method in this system. The raw item has reached the first pro-
cessing station. Let’s asume a drilling operation is performed
on the item. A new node is created. This node consists of



2

Fig. 1. Overview of Process monitoring and production control system trying to achieve using blockchain in this project

various information such as workstation ID, order ID, product
ID, task information, product weight, next task, and finally
the ID of the next station. The product is then conveyed to
the next station. The operator in the next station validates the
previous block. For the proper validation of the block, the
next station ID and next task from the previous block should
match the current station ID and task. If this condition is true,
the previous block is ”mined” and added to the blockchain.
As the item advances through subsequent stations, previous
blocks are validated and further operations are performed on
the item. Each procedure the item undergoes is monitored
and recorded in the blockchain. The third operation is the
assembly, followed by the quality inspection, packing and
finally logistics. In terms of logistics, there is a digitally
authorized smart contract which encapsulates freight informa-
tion, insurance, customer details and sender information. The
logistics container is transported through predetermined check-
points, allowing the system to track and update the package
information. Furthermore, packages could be fixed with IoT
sensors that provide information on package movement for
real-time tracking. Thus, a secure, trusted network of freight
management with distributed consensus can be achieved using
blockchain technology within the industry. The network is
readily scalable, and facilitates product quality assurance as
well as reliable auditing of manufacturing processes, materials
used and spare parts.

IV. OBJECTIVES

Our proposed system aims to provide the following core
advantages:

Decentralized trust: The blockchain is distributed across a
peer-to-peer network. Instead of relying on a central authority,
the nodes in the network all contribute in verifying transac-
tions and reaching consensus among them. This removes the

requirement for a universally-trusted authority. It also means
that no single entity can take control of the blockchain.

Resilience: A distributed blockchain is resistant to failures.
The network is run by multiple nodes, and thus has no single
points of failure. This peer-to-peer structure also safeguards
the blockchain from fraudulent alterations. The information
that is recorded in the blockchain cannot be modified or
removed after it has propagated through the network and been
verified by the majority of nodes.

Security: Strong cryptography is an integral part of
blockchain technology. The authenticity of recorded infor-
mation can be indisputably proven, as each transaction is
cryptographically signed. In the context of supply chains, this
facilitates auditing of individual assets or products, and adds
integrity to quality assurance procedures.

Scalability: The peer-to-peer nature of a blockchain net-
work makes it very easy to scale up or down depending
on the required throughput. As a supply chain grows, or
the production volume of a factory increases, the additional
load can be accommodated by adding more nodes to the
network. New nodes can seamlessly join at any time without
any disruption to the network.

Consensus: For rapid mining of blocks within a private
environment, we use a Proof-of-Authority based consensus
mechanism with identity at stake [7]. In this method of
consensus, each individual who is allowed to validate blocks
is associated with an identity in the form of a personal
identification number. The identity of the person validating
a node is therefore known, motivating the individual to be
trustworthy and honest in the task of validating blocks.

V. PROTOCOL

A. Hashes

The hash implemented uses a SHA-256 algorithm, which is
a member of the SHA-2 cryptographic hash functions designed



3

by the NSA. It’s a one-way hash, i.e., a hash can be generated
from any piece of data, but the data cannot be generated from
the hash. The output is a 256 bit chain, or, using a hexadecimal
representation, a 64 digits long, as follows:

hash(hello) = 2cf24dba5fb0a30e26e83b2ac5b9e29e1

b161e5c1fa7425e73043362938b9824

B. Signature

The signature process follows Public Key Cryptography
Standards (PKCS-v1 5) developed by RSA Labs. The process
is described below:

1) Generation: It requires signer’s RSA private key and the
message to be signed (in octet string format). The message is
encoded using the EMSA encoding operation and transformed
to an integer representation, upon which the RSAP1 signature
algorithm is applied. Finally, the outcome is given by a
signature string of length k octets, where k is the length of the
modulus. In this work, a 1024-bit modulus length was chosen.

2) Verification: For verification, the signer’s public key,
message and octet string signature are required. The first
step is to check the length of the signature, which must
match the modulus length. An inverse process is then applied.
It is transformed to an integer representative by means of
RSAVP1 algorithm, then to an encoded message. At this point
the EMSA algorithm is used to produce a second encoded
message. If both are the same then, it’s a valid signature.
Othewise, it fails.

C. Addresses

In order to create public and private key addresses, RSA
algorithms need the size of the modulus and a random object.
The size of the modulus is 1024 bits and the object is created
using Crypto library from RSA Labs. This procedure returns
a pair of keys (private and public).

D. Transaction

A transaction is formed by 4 attributes; sender public
key, sender private key, receiver public key and value. Value
property refers to the report to be submitted. The report
has a device identifier, the process that the device performs
and details of any failure. Additionally, a transaction has the
following 3 methods.

• getattr. Retrieves a specified attribute.
• to dict. Builds an ordered dictionary with the value and

public keys of sender and receiver.
• sign transaction. Signs the transaction using the sender’s

private key.

E. Block

Given the immutable characteristic of a block, it is not a
class as in the case of transactions but it is created by a call
to the parent class, i.e., the Blockchain class. Each block has
an identification number, timestamp of creation, transactions
array, nonce value and the hash of the previous block.

F. Blockchain

The Blockchain class is the core of this project and han-
dles block creation, verification, conflict resolution etc. Its
attributes are as follows:

• transactions. Array containing the broadcast transactions.
• chain. Array of blocks.
• nodes. Data structure containing no repeated values of

the different nodes.
• node id. A 128 bit unique identifier number (UUID).
• mining reward. In this case it works as a counter of

validations.
The methods that handle all the operations are described

below:
1) Genesis block: This procedure is executed only once by

the first node and represents the creation of the first block in
the block chain. A call is made to the create block method.

2) register node: Check the url or path from a node and
add it if the address is correct.

3) verify transaction signature: Verify the signature using
the procedure explained in section V-B.

4) submit transaction: If the verification was successful,
it adds the broadcasted transaction to the transaction pool.
Otherwise, it rejects the transaction.

5) create block: This function fills the block attributes
described in section V-E, removes the transactions added to
the block from the pool and appends a the new block to the
chain. This function automatically calculates the timestamp
and the block identification number.

6) hash: Create a SHA-256 hash of the block. Before
hashing the function, it sorts the keys in a dictionary to prevent
inconsistencies in the hashes.

7) proof of authority: Grab the previous block, extract,
compare and validate the hash of the block; validate station
number, i.e., the material or product station tag must match
with the current station; validate previous validator signature.
If some validation failed, the product returns to the relevant
station or it is set aside as defective; success otherwise.

8) valid chain: Validate a blockchain. It iterates through
the entire chain starting from block 1. At every stage it takes
the block in the current index and the block before; the first
filter hashes the last block and compares the result to the
previous hash attribute of the current block. The second
filter takes all transactions in the current block, sorts the
transactions and uses them along with previous hash and
nonce to validate the signature and station. If a successful
result is obtained, the filter moves on to the next block.
Otherwise, it fails.

9) return transactions to pool: After solving a conflict
(chains of same length), the blocks that were invalidated return
their respective transactions to the pool and the mining reward
transactions are removed.

10) resolve conflicts: Solve conflicts between chains by
replacing the current chain in the node by the longest one in
the network. First, it computes the length of the local chain and
gets the list of all nodes in the network; then grabs the chains
in the nodes through a web request. Finally it checks if one
of the chains is longer and valid by means of valid chain.



4

If successful, the chain is replaced and the transactions of
invalidated blocks are returned to the pool using the previous
function.

VI. APPLICATION

A. Back-End

Python is an interpreted language that is easy to use,
powerful, and versatile. Its great popularity has placed it in
the first place according to the IEEE survey [1]. It is largely
used both academically and industrially. Also, a large number
of optimization libraries have been developed allowing it to
compete with compiled languages such as Java. These reasons
led us to choose it for the back-end implementation of this
work.

B. Front-End

The web programming triangle (HTML5, CSS and
JavaScript) was chosen given its versatility and great com-
patibility. JavaScript has libraries that allow presenting infor-
mation in a simple way in the web interface and help us stay
focused on the application.

C. Frameworks

Flask is called a micro framework because it does not
require particular tools or libraries. It works as the server
instance allowing the communication between the front-end
and the back-end.

For visual interface purposes, Bootstrap, Ajax, jQuery and
DataTables are used in this work. All of them work through
the JavaScript language.

D. Features

The Blockchain implemented in this project has server,
client and two web interfaces or dashboards for miners and
users. Below, the main characteristics of each are presented
and will be explained in depth in the following sections.

1) Client:

• Identification generator (RSA-based).
• Encrypted transaction generator (RSA-based).

2) Blockchain:

• Proof of Authority (PoA).
• Transaction encryption (RSA cryptosystem).
• Addition of multiple nodes.
• Conflict resolution between nodes.

3) Web Interface:

• Blockchain miners/validators interface.
• Users interface.

E. Client

The client allows navigation and is responsible for handling
routes and communication with the user’s web interface. It has
a default configuration to listen to local host address 127.0.0.1
on port 8080. The port is an argument and can be changed by
the user.

The client allows the creation of public and private keys
for the user/validator. Furthermore, it contains the transaction
class and therefore it is responsible for generating, ordering
and signing each transaction that will be broadcast to nodes
in the Blockchain.

F. Server / Node

The Blockchain file acts as the server, however given the
decentralized nature of the Blockchain, the term node is more
accurate. It works on the local address 127.0.0.1 on port 5000.
The port is an argument and can be changed. Additionally,
this implementation supports different nodes working simul-
taneously. The tasks performed by the node use the protocol
in section V-F and are listed below.

1) Validate broadcasted transactions, all fields must be
filled; if successful the transaction is sent to the trans-
actions pool.

2) Get transactions in the transactions pool.
3) Return the current chain and its length when asked for

a web request.
4) Mine/Validate a new block. It executes

proof of authority, forges a new block and return
the information.

5) Register nodes that want to join to the blockchain
network.

6) Solve problems through consensus using resolve conflict
method.

The node maintains constant communication with the user
through the client, so the responses to the web requests are
accompanied by the following messages and web codes.

• 400. Missing values.
• 406. Invalid transaction.
• 201. Transaction created.
• 200. Ok / Successful.

G. Web Interface

The interface that is handled by the Client has as its
main window the key generator. In it, each user can generate
their key pair (private and public). In the New Transaction
window the user can broadcast transactions to a node by
filling all the fields (private, public and receiver key along with
the data). After filling, a new confirmation window appears
with an additional field which accepts the node address that
will receive the transaction. Finally, the last window History
connects to a node to request the history of the transactions
carried out.

In the node/server side the main window has two tables,
each with a search field to filter transactions and a selector
to choose the number of transactions to display per table.
Table at the top shows the transaction in the transaction



5

pool, i.e, waiting to be mined/validated; the second table
show information about the mined/validated transaction and
the block number in which they are. The configure window
allows the addition of nodes to the network. In each window of
the interface there is a visual section to display error messages,
as feedback to the user.

VII. RESULTS AND ANALYSIS

The application proved to be able to perform monitoring and
tracking of logistic processes within a company in a secure and
immutable way. The creation, editing, signing, hashing, broad-
casting, verification, conflict resolution and consensus, among
other processes stipulated in the protocol, were satisfactory
and sufficient to carry out the required tasks.

Taking into account the Bitcoin blockchain as a reference
(given its great security and standardized protocol), an analysis
of the chain implemented in this paper is presented below.

• The user public key is used as its address. Bitcoin uses
a more complex system of addresses; however, given the
aims and objectives of this application a more complex
system is not required, unless intended to operate across
several connected companies.

• The signature process in Bitcoin is covered by Elliptic
Curve Digital Signature Algorithm (ECDSA), whereas
this implementation uses RSA. Both are very secure, and
although ECDSA slightly outperforms RSA in terms of
security and space optimisation, the verification process
is more than 30 times slower.

• Transactions in Bitcoin require a script language. For this
project a simple transaction with one JSON object per
output is enough. If it is required to have multiple data
types per output, a stack-based script will be required.

• Bitcoin uses a Merkle tree to save disk space. The amount
of information in this project is not as big as in Bitcoin,
therefore this optimisation can be skipped unless the
system is intended to serve a large number of users.

• The SHA-256 hashing is performed twice in Bitcoin, but
just once in this implementation. We consider one hashing
round to be sufficient, as this presents a good trade-off
between security and speed.

VIII. LIMITATIONS

The application was created taking into account scalability
and application of good practices. Nevertheless, given the
available time and resources, it lacks the flexibility and robust-
ness necessary to enter a production environment. The client
interface lacks a tool that allows users to manage their contacts
and not have to remember the public keys; also, the transaction
generation form is complicated to use due to the manual filling
of information, making it prone to human errors.

On the server side, layers of security and authentication
must be added. The communication between client and node
has been implemented with Flask. However, this micro-
framework has many limitations and it is necessary to use
a full-featured, flexible framework such as Node.js, to make
the system production-ready.

The most important topic in Blockchain and its raison d’etre
is security. The main security concerns in this application are
listed below.

• Use of floating point arithmetic can lead to many prob-
lems (e.g. loss of precision).

• The implemented JSON serialization is not reproducible
across platforms.

• The implemented mining method can loop forever due to
integer overflow.

We have considered the case of a basic sequential process
involved in production. The scale of complexity in large
corporations is not fully known. Many factors might require
reconsideration while implementing the system in companies
involving parallel tasks, dependency based tasks, and mul-
tiple processes. Linking of different simultaneous processes
at different locations, and secure validation of the blockchain
is crucial and requires further work and understanding to be
deployed more robustly.

IX. FURTHER WORK

An extended and standardized version of the protocol is
required where the type and size of data for each field is
established, the number of transactions or size in bytes per
block is limited, a different JSON serialization method is used,
the mining algorithm is optimized and the use of floating point
is avoided.

This work can be expanded to accommodate multiple tasks
and processes within a company. A reliable help desk system
can be implemented and the use of smart contracts can be
integrated for greater flexibility in financial processes. Bonuses
can be awarded to workers who work on a commission basis
and employee contracts can be integrated in the system. The
possibilities are many and this project can be used as the
nucleus and engine for all of them.

Furthermore, extending this project, we could manage to
automate the whole manufacturing process to automatically
verify data, validation and updating blockchain with integra-
tion of more sophisticated IoT sensor. This can reduce the even
the minimal error that are prone due to human involvement.
One of the basic advantage of this method is that it has got less
mining time compared to that of other consensus mechanism
and does not require more computational power. Hence these
system can be implemented in small scale industries with basic
structure at low cost.

REFERENCES

[1] S. Cass, “The 2017 top programming languages,” Jul
2017. [Online]. Available: https://spectrum.ieee.org/computing/software/
the-2017-top-programming-languages

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf.”

[3] “Pkcs-1: Rsa cryptography specifications version 2.2.” [Online].
Available: https://tools.ietf.org/html/rfc8017#section-8.1.1

[4] “Script.” [Online]. Available: https://en.bitcoin.it/wiki/Script
[5] “Pkcs-1: Rsa cryptography specifications version 2.2.” [Online].

Available: https://tools.ietf.org/html/rfc8017#section-5.2.1
[6] “Protocol documentation.” [Online]. Available: https://en.bitcoin.it/wiki/

Protocol documentation
[7] P. Network, “Proof of authority: consensus model with identity at

stake,” Nov 2017. [Online]. Available: https://medium.com/poa-network/
proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://tools.ietf.org/html/rfc8017#section-8.1.1
https://en.bitcoin.it/wiki/Script
https://tools.ietf.org/html/rfc8017#section-5.2.1
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://medium.com/poa-network/proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256
https://medium.com/poa-network/proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256

	Introduction
	Motivation
	General Overview of the Idea
	Objectives
	Protocol
	Hashes
	Signature
	Generation
	Verification

	Addresses
	Transaction
	Block
	Blockchain
	Genesis block
	register_node
	verify_transaction_signature
	submit_transaction
	create_block
	hash
	proof_of_authority
	valid_chain
	return_transactions_to_pool
	resolve_conflicts


	Application
	Back-End
	Front-End
	Frameworks
	Features
	Client
	Blockchain
	Web Interface

	Client
	Server / Node
	Web Interface

	Results and Analysis
	Limitations
	Further Work
	References

