
Coursework Foundations of AI 1

COMP6231: Basic Search Methods
Julio Cesar Aguilar Jimenez1,2,3

1School of Electronics and Computer Science, University of Southampton
2MSc. Artificial Intelligence, ID. 29312175
3Author email: jcaj1n17@soton.ac.uk

January 9, 2018

The results of applying different search algorithms (DFS, BFS, IDS, A*) for the resolution
of a problem ”Blocks World Tile Puzzle”) are presented. The first approach is a ”Tree
Search” type being very unfavourable for this problem and failing in the majority of cases
even without increasing the difficulty of the same. The second approach is an adaptation
of the algorithms in order to storage the visited nodes, which converts them into a ”Graph
Search” type. This greatly improves the performance and allows to find optimal solutions
to the problem in such a way that this scale.
Nikola Tesla: ‘I have not failed. I’ve just found 10,000 ways that won’t work.’

1. INTRODUCTION
AI research is defined as the study of Intelligent
Agents. Any device that perceives its environment
and takes actions that maximise its chance of suc-
cess at some goal.

In this paper we present 4 different search meth-
ods that solve a defined problem, they start in a de-
fined initial state and perform a search until reach-
ing the desired final state.

Search algorithms allow us to find solutions to
problems, allowing machines the ability to compare
states and analyse possible situations to reach the
desired state.

2. APPROACH
One of the crucial points to correctly perform the
algorithms is to have data structures that fit the
needs of each algorithm.

The diversity of data structures helps the de-
veloper to focus on the flow and strategy of the prob-
lem and not on the data management by the com-
piler.

2.1. Language
The languages with more time of development and
resources have this type of structures and that is
why the Java language was chosen for this work.

2.2. Problem
We will examine the game Blocks World Tile
Puzzle, the board is a matrix of tiles of dimension
NxN where there will be four special tiles, called
blocks (A, B, C, Agent).

The objective of the game is to group these three
blocks in a tower so that A is above B and this
one of C. The Agent block will move through the
board changing its position with the tile or block
in the direction that it moves, it respects the edges
of the board.

The initial and final states are given at the be-
ginning of the game, the blocks (A, B, C) always
start in the lower left corner and the Agent in
the lower right corner. The final state is a tower,
where the last block C is at the edge of the board
and a place moved to the right of the lower left cor-
ner, the other two blocks are above it, where A is
at top and the Agent block should be in the lower
right corner. The following matrices illustrate the
foregoing.

4x4 − Initial
• • • •

• • • •

• • • •

A B C Ag

→
4x4 − Goal
• • • •

• A • •

• B • •

• C • Ag

Coursework Foundations of AI 2

5x5 − Initial
• • • • •

• • • • •

• • • • •

A B C • Ag

→
5x5 − Goal

• • • • •

• A • • •

• B • • •

• C • • Ag

2.3. Breadth-First Search (BFS)
For this method a FIFO type buffer (First In, First
Out) is necessary. Java has the LinkedList sub-
class that emulates this behaviour and will contain
the nodes to analyse. The HashSet class provides
a structure that stores unique elements, making it
ideal for keeping track of visited nodes.

2.3.1. Operation
The first step is to add the initial node to the lists
or structures, then a loop will be carried out until
the list is empty, we will obtain the node at the top
and validate if its state is equal to the goal, if it
is, the console prints the result. Otherwise we cre-
ate a list of nodes with the possible movements
from the current position of the agent and again
validate if this node was already visited, if it was,
it’s ignored and otherwise it will be added to both
structures.

It will continue in the loop until it finds a result
or otherwise it will return a null indicating an error
in the search.

2.4. Depth-First Search (DFS)
For this method, a LIFO type buffer (Last In, First
Out) is necessary. Java has the Stack class which
provides this behaviour in our array or list. The
operation is the same as that shown in Section 2.3.1.

2.5. Heuristic Search A*
For the heuristic search it is necessary to add an-
other parameter to our nodes, this is the cost from
that node to the final node.

The cost is calculated by adding the Manhattan
distances of the blocks (A, B, C) to the final co-
ordinates of the respective block. It is important
to mention that since the Agent must move freely
on the board this should not be considered in the
calculation of the cost.

The operation is almost the same as previously
described in Section 2.3.1, with the difference that
when validating the possible movements of a node,
if this node has not been visited, its cost must be
calculated before being added to both structures.

2.6. Iterative Deepening Search
This method is born from DFS and it is neces-
sary to restrict its search to a maximum depth,
therefore it is necessary to save the depth. The
HashMap class will allow us to record both the
node and its depth.

2.6.1. Operation
We make use of the recursion by means of a sec-
ondary method that will do the searches and it will
be constantly calling. Once it I the result it will
call the main method to notify it and print results.

In the first instance, we initialise our depth to
1 and create a null node that will be the flag that
will indicate when the algorithm find the result.

We will loop the execution of the search method
increasing the depth in each iteration and giving it
as parameters the nodes with the initial and final
state.

The search works in a similar way to Section
2.3.1, only now we will use the HashMap structure
to store the node and the depth in which it was vis-
ited. When analysing the possible movements, we
must validate the depth and in case of not having
been visited that node, it is stored with its respec-
tive depth.

3. STRUCTURE OF THE APPLICATION
The application was developed in IntelliJ Idea envi-
ronment. It has 5 classes and one enumeration file.
Due to the nature of Java, it is necessary to create
the enums in separate files.

3.1. State and Node Classes
The State Class is a representation of a physical
configuration. It contains methods to create a tem-
porary board, set the positions of the blocks and
print them in console, compare the current state
with someone else (the goal state) and validations
to move the agent in the different directions.

The Node Class is a data structure and contains
the properties of parent, state, path cost, depth and
direction. It has the method to calculate the cost in
the heuristic search by Manhattan distance, 2 types
of constructors and the function that calculates the
possible movements.

This design was chosen taking as reference the
previously seen in class, each node stores its own
state. [1]

Coursework Foundations of AI 3

3.2. Block and Board Class
The Block Class will allow us to create both the
tiles and blocks A, B, C and Agent. It has the
name and the coordinates in X and Y as properties.
It is important to mention that the tiles or empty
blocks will have the title of tile while the blocks
will be called A, B, C, Ag respectively.

The Board Class has as properties the initial
and final nodes, it has the functions that are re-
sponsible for executing the search methods.

3.3. Main Class
The Main Class that executes the others classes,
contains flags for the search methods that will be
changed to false if some error occurs such as run-
ning out of memory, in this way the application will
continue with the process.

Its functions are to create boards of size 4x4 up
to 20x20, set the initial and final states, and fi-
nally execute the search methods on each board.

4. EVIDENCE
Below are the impressions in console of the differ-
ent tests that were made. Due to the size of DFS
method, the complete output for the Graph Search
is appended in Section ??.

TREE SEARCH APPROACH

***** SEARCHING IN 4x4 BOARD *****
DFS search failed for 4x4 board. Out of memory error
BFS search failed for 4x4 board. Out of memory error

- IDS
Moves: 17726954
Time: 45473.0
Depth: 16
Path: [←, ←, ←, ↑, →, ↓, →, →, ↑, ←, ↑, ←, ↓, ↓, →, →]

- A*
Moves: 110717.0
Time: 1358.0
Depth: 16
Path: [←, ←, ←, ↑, →, ↓, →, →, ↑, ↑, ←, ←, ↓, ↓, →, →]

***** SEARCHING IN 5x5 BOARD *****
HEUR search failed for 5x5 board. Out of memory error

EXTRA-GRAPH SEARCH APPROACH

***** SEARCHING IN 4x4 BOARD *****
- DFS
Moves: 9062
Time: 179.0
Depth: 4758
Path: [←, ←, ←, ↑, →, →, →, ↓, ←, ←, ←, ↑, ↑, →, →, →...]

- BFS
Moves: 4969
Time: 61.0
Depth: 16

Path: [↑, ←, ↓, ←, ←, ↑, →, ↓, →, ↑, ↑, ←, ↓, ↓, →, →]

- IDS
Moves: 10569
Time: 163.0
Depth: 16
Path: [←, ←, ←, ↑, →, ↓, →, →, ↑, ←, ↑, ←, ↓, ↓, →, →]

- A*
Moves: 561
Time: 31.0
Depth: 16
Path: [←, ←, ←, ↑, →, ↓, →, →, ↑, ↑, ←, ←, ↓, ↓, →, →]

***** SEARCHING IN 5x5 BOARD *****

- DFS
Moves: 202616
Time: 3650.0
Depth: 93892
Path:
[←, ←, ←, ←, ↑, →, →, →, →, ↓, ←, ←, ←, ←, ↑, ↑, →, →...]

- BFS
Moves: 10648
Time: 54.0
Depth: 18
Path:
[↑, ←, ←, ↓, ←, ←, ↑, →, ↓, →, ↑, ↑, ←, ↓, ↓, →, →, →]

- IDS
Moves: 22645
Time: 328.0
Depth: 18
Path:
[←, ←, ←, ←, ↑, →, ↓, →, →, ↑, ←, ↑, ←, ↓, ↓, →, →, →]

- A*
Moves: 1254
Time: 19.0
Depth: 18
Path:
[←, ←, ←, ←, ↑, →, ↓, →, →, ↑, ↑, ←, ←, ↓, ↓, →, →, →]

5. RESULTS
The application was tested on a MacBook Pro (13-
inch, 2017), with a 2.3 GHz Intel Core i5 processor,
8 GB 2133 MHz LPDDR3 memory and solid state
hard drive.

5.1. Tree Search
The use of DFS and BFS proved to be unable
to solve the problem for the minimum size (4x4),
these algorithms expand nodes very fast in a short
amount of time causing system resources to run
out and an error occurs.

For the case of A*, the algorithm is able to solve
the problem for a size of 4x4 but not 5x5, it ends
up exhausting the resources of the system.

The IDS algorithm proved to solve the problem
for sizes 4x4 and 5x5, however the time it takes is
long. The Table 1 and the Figures 5.1, 5.2 show
the results obtained.

Coursework Foundations of AI 4

Table 1. Results obtained in different methods

Method Nodes Size Success

DFS 1, 367, 918 4 No

BFS 1, 034, 903 4 No

IDS
17, 726, 954 4 Y es

403, 168, 687 5 Y es

A∗
110, 717 4 Y es

680, 759 5 No

DFS BFS IDS A*
0

2

4

6

8

10

12

14

16

18

N
od

es
 E

xp
an

de
d

106

Fig. 5.1. Nodes expanded in 4x4 board

IDS A*
0

5

10

15

20

25

30

35

40

45

T
im

e
(s

)

Fig. 5.2. Time to solve the problem in 4x4 board

5.2. Extras (Graph Search)
The algorithms were adapted. A record of the vis-
ited nodes was added, which greatly improvised
the performance of these. It is an approach oriented
to the Graph Search unlike the previously seen Tree,
where a state can be visited an infinity of times.

The code was made in a scalable way creating
boards of dimensions 4x4 to 20x20, the results

printed on the console were collected and processed
in Matlab. The Figures 5.3, 5.4 show the results
obtained.

4 6 8 10 12 14 16 18 20

Board Size

0

2

4

6

8

10

12

14

N
od

es
 E

xp
an

de
d

105

DFS
BFS
IDS
HEU

Fig. 5.3. Nodes expanded in different sizes

4 6 8 10 12 14 16 18 20

Board Size

0

50

100

150

200

250

300

350

T
im

e
(s

)

DFS
BFS
IDS
HEU

Fig. 5.4. Time to solve the problem in different
sizes

5.3. DFS
This method had the poorest performance com-
pared to the others, the complexity of the time
and space increase sharply as the difficulty of the
problem increases.

DFS is able to find the solution to the prob-
lem for small dimensions of the board (4x4− 6x6),
however the solution is far from optimal. Given
the amount of resources it needs and its poor per-
formance, this search method is inefficient for this
problem.

5.4. BFS
This method has generally shown good perfor-
mance, the complexity of time and space is good,

Coursework Foundations of AI 5

and the solution is optimal. Even so, this method
took too many resources and failed when the board
reached a size of 16x16.

5.5. IDS
No doubt IDS is better than DFS, the solution in
this method is optimal. However, the complexity
of space and time continue to be very large, causing
it to fail once the board reaches the dimensions
of 15x15. In addition, the time it takes is much
longer than BFS and A*.

5.6. A*
The use of heuristics is the one that showed great
performance in both time and space complexity and
the response is optimal (at least for this problem).
This method depends to a large extent on the
heuristic used, therefore it can increase or decrease
its performance depending on the heuristic esti-
mate used.

6. SCALABILITY
The code was made so that the problem could easily
scale, with the creation of 4x4 boards up to 20x20
and test each of the methods on each board. When
the methods finish their search in the current board,
a new board whose dimension will be greater in 1
will be created.

The code also has the option of being able to
adjust the coordinates of initial and final states of
the board so that tests can be done with different
positions in the blocks.

7. CONCLUSIONS
Finding an optimal solution is the goal of a search
method, however the amount of computational re-
sources and the time this method entails are impor-
tant.

Given the nature of the problem, the Tree Search
is not adequate because it can be infinitely cycled,
it allows the Agent to visit previous nodes an in-
finity of times and exhaust system resources.

The Graph Search is able to solve this problem
due to its feature of saving and validating past
states in order not to repeat them.

Taking into account the results obtained, we can
affirm that the most adequate method for the solu-
tion of this problem is A*, as long as it is provided
with a good estimate in the heuristic.

BFS is another feasible method to use and does
not need additional information such as A*.

IDS is an inefficient method, it produces an op-
timal solution but the time and resources required
for this are very high.

DFS is the last resort to use, it can only be used
in small dimensions and the resources you need are
very big.

8. LIMITATIONS AND WEAKNESSES
The use of languages such as C and C++, given
their nature and processing control can produce bet-
ter performance, however the solution will remain
equally optimal and the complexity of handling
and release memory can be very high.

The use of structures such as HashMap and
HashSet in Java affect the complexity of the space
due to the detection of loops and visited nodes.

Heuristic estimates are another factor to con-
sider, if a better estimate is provided it will lead
to more efficient results.

Algorithms can be improved, reducing the num-
ber of lines and calls to functions. In turn, a graph-
ical interface can be implemented where the user
can easily choose a board size and establish the co-
ordinates or initial and final states for the blocks.

Although it is possible to change the initial and
final states of the blocks and the agent, the code
does not allow the creation of new blocks, obstacles
or a second agent.

REFERENCES
1. R. Watson. (2010, Oct.) Search1-blind.pptx. [Online].

Available: https://secure.ecs.soton.ac.uk/notes/comp6231/
lectures/07%20-%20Search1-Blind.pptx

2. SJ. (2015, May) Breadth-first search/traversal in a binary
tree. [Online]. Available: hhttp://algorithms.tutorialhorizon.
com/breadth-first-searchtraversal-in-a-binary-tree/

3. R. Watson. (2010, Oct.) Search2-heuristic.pptx. [Online].
Available: https://secure.ecs.soton.ac.uk/notes/comp6231/
lectures/08%20-%20Search2-Heuristic.pptx

4. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. Pearson Education, 2003.

https://secure.ecs.soton.ac.uk/notes/comp6231/lectures/07%20-%20Search1-Blind.pptx
https://secure.ecs.soton.ac.uk/notes/comp6231/lectures/07%20-%20Search1-Blind.pptx
hhttp://algorithms.tutorialhorizon.com/breadth-first-searchtraversal-in-a-binary-tree/
hhttp://algorithms.tutorialhorizon.com/breadth-first-searchtraversal-in-a-binary-tree/
https://secure.ecs.soton.ac.uk/notes/comp6231/lectures/08%20-%20Search2-Heuristic.pptx
https://secure.ecs.soton.ac.uk/notes/comp6231/lectures/08%20-%20Search2-Heuristic.pptx

	Introduction
	Approach
	Language
	Problem
	Breadth-First Search (BFS)
	Operation

	Depth-First Search (DFS)
	Heuristic Search A*
	Iterative Deepening Search
	Operation

	Structure of the Application
	State and Node Classes
	Block and Board Class
	Main Class

	Evidence
	Results
	Tree Search
	Extras (Graph Search)
	DFS
	BFS
	IDS
	A*

	Scalability
	Conclusions
	Limitations and weaknesses

