
Text Classification, a General Approach
Chun Hei Fok, Julio Aguilar Jimenez, David Guest, Jo Houghton, and Sofie Debloudts

Abstract—A wide range of classifiers are used on three
different data sets (‘spam’, ‘toxic’ and ‘movie’). Results are
reported, using both preprocessed and raw text, with the use
of three different word encoders (Tf-Idf, word2vec, GloVe) on
the datasets. The relative performance of different encoders,
processing, and balancing is discussed. A hybrid CNN-RNN
model is implemented and and tested alongside more traditional
approaches (eg. SVM, NB, etc.) The evidence points to simpler
approaches being more generally applicable and performing
better, as although the hybrid model has the best performance
in two of the data sets, it underperforms in the third.

I. INTRODUCTION

Text classification is ubiquitous in real-world problems.
Spam is a continuing problem besetting email servers, and
while a number of different solutions have been posited, most
rely on a good spam filter. Toxic language such as hostility,
insults and threats present a barrier that discourages, limit and
shut down user comments, presenting a big problem for plat-
forms that seek to improve user communication experiences,
and automated analysis of user sentiment is important for a
range of problems, from analysing product quality, to predict-
ing the stock market. This paper aims to offer a comparison of
a range of algorithms on several text classification problems.

II. TEXT CLASSIFICATION TASKS

A. Toxic

The toxic comment dataset was released with the goal of
identifying toxicity of online comments. The data consists of
159,571 comments with binary labels indicating toxic and non-
toxic [4]. The data was used with multi-label classification in
a Kaggle competition, but for this report only binary toxic/not
toxic predictions have been sought.

B. Spam

The spam email dataset contains 33,713 emails from the
Enron Corporation. It was obtained by the Federal Energy
Regulatory Commission during its investigation of Enron’s
collapse [6]. The set was used in a Kaggle competition as
well as in this work, for binary classification (spam/ham).

C. Movie

This dataset consists of 156,060 excerpts from movie re-
views and their respective sentiment labels, ranging from 0
(negative) to 4 (positive). The data was provided by Rotten
Tomatoes, a movie review website, and collated for a past
Kaggle competition. It notable that this dataset has repeated
phrases from the same review, with different sentiment labels
given by hand [5].

III. CLASSIFIERS

A. Logistic Regression

Logistic regression applies maximum likelihood estimation
after transforming the dependent variable into a logit variable,
which is the log odds of dependent variable occurrence, with
respect to independent variables. In this way, logistic regres-
sion estimates the probability of a certain event occurring.

log(odds) = log

(
p

1− p

)
= β0 + β1 ∗X1...βn ∗Xn (1)

Logistic regression does not assume linear dependence,
normal distribution or homogeneity in the variables.

B. LDA and QDA

Linear Discriminant Analysis (LDA) and Quadratic Dis-
criminant Analysis (QDA) are a generalisation of Fisher’s
linear discriminant, they find a combination of features that
characterise or separate two or more classes of objects. The
resulting combination may be used as a linear classifier or for
dimensionality reduction before later classification.

LDA and QDA assume that the measurements have a normal
distribution, the predictions and the probability density are
calculated by Equations (2), (3).

P (y = k|X) =
P (X|y = k)P (y = k)∑
l P (X|y = l) · P (y = l)

(2)

p(X|y = k) =
1

(2π)n|
∑
k |1/2

exp

(
−1

2
σt

−1∑
k

σ

)
(3)

Where σ = (X −µk). For LDA, the Gaussians for each class
are assumed to share the same covariance matrix, and have
different covariance matrices for QDA.

Limitations of logistic regression include:
• Well separable classes. Logistic regression can become

unstable when the classes are well separated.
• Few examples. Logistic regression can be unstable when

there are few examples from which to estimate the
parameters.

• Two class problem. Although it can be expanded, logistic
regression is focused on a binary classification.

C. Random Forest

Random Forest (RF) is an ensemble of decision trees,
it focuses on sampling both observations and variables of
training data to develop independent decision trees and take
majority voting for classification and averaging for regression
problems respectively. In random forest, a few observations

and columns are selected to create uncorrelated individual
trees.

Decisions of trees have low bias but very high variance
error due to overfitting, however RF random sampling allows
to reduce this error preserving a good trade-off with bias, the
following considerations were used in the construction of the
model [1].

• 2/3 of observations for each individual tree.
• Number of columns =

√
p, p = total columns.

• Number of trees was chosen based on the results ob-
tained.

D. Multinomial Naive Bayes

The Multinomial Naive Bayes (MNNB) classifier is a
Bayes-theorem based classifier. It is commonly used in text
classifications problems such as email-spam detection, doc-
ument categorisation, explicit content detection, etc. Despite
being outperformed by other learning models such as random
forest, boosted trees, SVM, etc. MNNB outperforms others in
using less computational resources such as CPU and memory
as well as only requiring small amount of training data. Due
to these advantages it also requires less training time. MNNB
is also suitable when multiple occurrences of words matter in
a problem. The classifier can be defined as:

cmap = arg max(P (c|d)) = arg max(P (c)
∏

16k6nd

(tk|c))

Where tk are the tokens of the text document, C is the set
of classes.

E. SVM

Support Vector Machine (SVM) classifiers are based on the
idea of building a hyperplane which divides the dataset into
two or more classes. The SVM identify the hyperplane which
maximises the distance between itself and the training data.
Kernels as well as soft margins are employed when there is
no hyperplane to separate the data points. The cost function
of the learning algorithm can exist in the dual form:

min
w,b

|w|2

2
subject to yk(w

Txk − b) ≥ 1 (4)

and max
α

P∑
k=1

αk −
1

2

P∑
k,l=1

αkαlykylxk
Txl (5)

with

P∑
k=1

αkyk = 0 and αk ≥ 0 (6)

Where xk is an n-dimensional vector, yk is the respective
class identifier, P is the number of vectors and w is the
distance margin. Both forms can be solved via quadratic
programming algorithms.

Some of the advantages of using an SVM are its accuracy
and efficiency in small datasets, particularly those with large
numbers of features, such as text data with large vectoriser
spaces. However it is less effective on noisier datasets with
overlapping classes.

F. ADA Boost

Boosting works in a sequential manner and does not involve
bootstrap sampling; instead, each tree is fitted on a modified
version of an original dataset and finally added up to create a
strong classifier.

H(x) =
∑
t

ρtht(x) (7)

A classifier is fitted on the data and evaluate overall errors.
The error used for calculating weight should be given for
that classifier in the final additive model (α) evaluation as
in Equations (8), (9).

errm =

∑N
i=1 wiI(yi 6= Gm(xi))∑N

i=1 wi
(8)

αm = log

(
1− errm
errm

)
(9)

Higher weights will be given to the model with fewer errors.
Weights for each observation will be updated.

wi < −wi ∗ exp[αm ∗ I(yi 6= Gm(xi))], i = 1, 2, ..., N (10)

Although Ada Boost is a powerful classifier, it can be
sensitive to noisy data and outliers. The algorithm also does
not currently support null rejection. The base estimator used
in datasets was a Decision Tree Classifier and the number of
maximum estimators was set to 10.

G. Extreme Gradient Boost

Extreme Gradient Boost (XGBoost) is an implementation
of gradient boosted decision trees designed for speed and
performance. The library has several advantages such as par-
allelisation of tree construction, cache optimisation, supports
block structure, automatically handles missing data and has a
continuous training to improve already trained models.

XGBoost works under the principle of boosting, which has
the following elements:

• Loss function, varies depending on the type of problem
(mean squared error for regression and logarithmic loss
for classification).

• Weak learner to make predictions, decision trees are used
as weak learners.

• Additive model, trees are added one at a time.
Using a weighted average model (higher importance given

to better models that predict results with greater accuracy than
others) the output is given by Equation (11).

Y = α ∗ F (x) + β ∗G(x) + γ ∗H(x) + error (11)

The configuration used in this work is as follows:
• Tree method = exact greedy.
• Max depth of tree = 1...4.
• Subsample ratio of training instance = 0.8.
• Subsample ratio of columns = 0.8.

H. CNN-RNN Hybrid

The architecture used for this classifier is as follows:
• Embedding input layer. Receives a previously sequenced

vector of size 100, keeps the top 10,000 words and
outputs a vector length 32.

• Convolutional layer. The dimensionality of output space
is 32, kernel size 3, uses “relu” activation function and
preserves input size.

• Max pooling layer. 1D pooling layer with max pooling
windows of 2.

• LSTM layer. 100 units, tanh activation function, dropout,
and recurrent drop out of 0.2.

• Dense output layer. Sigmoid activation function.
The embedded layer transforms the positive integers into

dense vectors of length 32. [2]

int(x) =
[
v1, v2, v3, . . . , v32

]
(12)

The 1-D convolutional layer performs 32 filters on a 3x3
window to be processed later, gradients of the filters are
calculated by Equations (13), (14), where W, b, x, y, k, a and δ
are the weights, bias, training data, labels, filter number, inputs
of actual layer and error term respectively.

∇
W

(l)
k

J(W, b;x, y) =

m∑
i=1

(a
(l)
i) ∗ rot90(δ(l+1)

k , 2) (13)

∇
b
(l)
k

J(W, b;x, y) =
∑
a,b

(δ
(l+1)
k)a,b (14)

The 1-D max pooling layer reduces the output dimen-
sionality by half and provides input for the long short term
memory network (LSTM), which is capable of learning long-
term dependencies. The first step is to decide what information
is to be thrown away from the cell state using a sigmoid layer
called the“forget gate layer. A number is output between 0
and 1 as in Equation (15) using ht−1 and xt.

Next, a sigmoid layer called the“input gate layer decides
which values to update and a tanh layer creates a vector of
new candidate values C̃t, that can be added to the state (16).

ft = σ(Wf · [ht−1, xt] + bf) (15)

C̃t = tanh(WC · [ht−1, xt] + bc) (16)

In order to update the old cell state, the old state is
multiplied by ft and new candidate values are added (17).
The output will be based on our cell state, a sigmoid layer is
run which decides what parts of the cell state will be output
(18). For the last step in LSTM, we put the cell state through
tanh and multiply it by the output of the sigmoid gate (19).

Ct = ft ∗ Ct−1 + it ∗ C̃t (17)
ot = σ(Wo[ht−1, xt] + bo) (18)
ht = ot ∗ tanh(Ct) (19)

The final layer is a dense fully connected layer or, in the
case of multiclass problems, is composed of n dense layers.
This is the most complex classifier used in this work.

IV. PREPROCESSING AND ENCODING

A. Pre-Processing

The following techniques were used to pre-process the text:

• Remove standard punctuation. Symbols like“. , ;, :, &, /,
(, etc.”, were replaced with empty strings.

• Tokenise text into words based on space characters.
• Lowercase the words to avoid duplicates.
• Stop words removal. Frequent words like “the, on, and,

which”, were removed.
• Threshold. Words with length < 3 were removed.
• Stemming. Reduce words to the root to avoid duplicates.
• Lemmatise. Tag the words into 4 categories of nouns and

6 verbs, e.g. noun common singular, noun proper plural.

B. Tf-Idf

Term frequency-inverse document frequency is intended to
reflect how important a word is to a document in a collection or
corpus. The tf-idf value increases proportionally to the number
of times a word appears in the document and is offset by the
frequency of the word in the corpus. The parameters used are:

• Ignore terms that have absolute count lower than 2.
• Ngrams boundaries or range = 1 ≤ n ≤ 2.
• 1,000 features ordered by term frequency.

The number of features was found to be the most crucial
parameter, with the SVM classifier, the spam dataset and
features of 20, 100, 1000, 4000 and 10000; the accuracy
obtained was 78, 82, 93, 94 and 93 respectively.

C. Word2Vec

Word2vec was developed at Google by Tomas Mikolov, and
subsequently analysed by Goldberg and Levy [7]. It involves
a one hot encoding of the words used, then a two layer
neural net, where a word is predicted using the surrounding
words. This can be done using a ‘continuous bag of words’,
which does not preserve word order, but is fast, or a ‘skip-
gram’ model, which places much more emphasis on the words
nearest the word in question. The ‘skip-gram’ model is slow,
but generates a more subtle representation of the words, better
for rarer words. In this work, ‘skip-gram’ was used, as it was
hoped that the more subtle encoding would preserve the useful
information in the word order better. For example, from the
raw, unpreprocessed toxic dataset, these words were found to
be nearest to ‘im’ in vector space: ‘I’m’; ‘i’m’; ‘Im’; ‘its’;
‘am’; ‘it’s’. This can be used to generate a ‘t-SNE’ plot of the
words in a dimensionally reduced vector space (Fig. 1).

To produce an encoding for whole phrases, a paragraph2vec
approach was adopted to produce an embedded representation
for whole phrases in the training set [13].

Fig. 1. Plot of word2vec encoding of words, using the unpreprocessed ‘toxic’
dataset, in 2d (using PCA to reduce the dimensionality)

Fig. 2. Graph to show variation of classification accuracy vs vocabulary size.

a) Vocabulary Size: Using word2vec, on unpreprocessed
data, the random forest classifier was used to classify the
‘spam’ dataset. Vocabulary size was varied, from 50 to 50000,
and the results plotted below. It appears there is no advantage
in increasing vocabulary sizes above 5000, , though there is a
cost in terms of decreased f1 score. Interestingly, a vocabulary
size of only 100 was able to allow 90% accuracy on the spam
dataset, most of those words are punctuation, and stopwords,
but also include words such as ‘thanks’, ‘enron’, and ‘farmer’,
indicative of the dataset they were taken from. For better
generalisation, a larger vocabulary should be necessary, but
in the case of email for a particular person, it may be possible
that an algorithm could learn quite effective simple rules to
provide a personalised supplement to good spam detection.

Fig. 3. Graph to show variation of classification performance using accuracy
and f1 score vs embedded vector size

b) Embedded Vector Size: In our implementation of
word2vec, the size of the feature vector output can be varied
to change the number of features available to the classifier.
Vector size was varied for each of the three datasets, using the
unpreprocessed data and a random forest classifier. A graph
of this classification accuracy can be seen in Fig. 3.

D. GloVe

One of our hypotheses was that word embeddings trained
within the data sets would lead to superior accuracy than the
more generalised pre-trained word embeddings. To represent
a word embeddings model trained using an outside corpus, we
used the Stanford GloVe embeddings, trained on the Wikipedia
2014 and Gigaword 5 corpus [11]. This corpus contained 6
billion words, outputting embeddings with 100 dimensions.

V. BALANCING

Another hypothesis was that the accuracy of classification
may be improved by training on more balanced data sets.
Therefore for both the toxic and movie datasets, we applied
differing methods of balancing the dataset for bias correction.

A. Toxic

During the preprocessing stage, toxic was discovered to
be highly unbalanced, with 89.4% of comments being non-
toxic. To correct the class bias, a oversampling technique
called Synthetic Minority Over-sampling Technique (SMOTE)
was used. For example, given a dataset of x samples and k
features in the feature space. The idea behind the technique
involves creating synthetic data points (from a minority class)
by considering the k nearest neighbours (in feature space) of
a sample from the dataset. A vector is taken between one of
the k nearest neighbours, and multiple it by a random number
z which lies between 0 and 1 to create the new synthetic point
[10].

B. Movie

A simpler method of balancing the dataset was used for
movies. Originally this was a 5-class problem, with over
50% of the data classified as neutral, with the other classes
containing between 10% and 15% of the data points. For
comparison, we therefore combined classes 0 and 1 into a
single class indicating negative sentiment, and classes 3 and
4 into a single class indicating positive sentiment, to reduce
this to a 3-class classification problem with a distribution of
roughly 25-50-25.

VI. RESULTS

A. Spam

The spam dataset was trialled with a wide range of clas-
sifiers, support vector machine (SVM), logistic regression
(LR), Naive Bayes (NB), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), a CNN-RNN hybrid
network, as described in section III-H (CNN-RNN), XGBoost
(XGB), and random forest (RF). The accuracy results are
tabulated (Table I) for both raw and preprocessed text, with
Tf-Idf, word2vec and GloVe encodings.

B. Toxic

The ‘toxic’ dataset was trialled with a good range of
classifiers, SVM, LR, NB, CNN-RNN, XGB and RF, with
both preprocessed and raw data. This data is tabulated for
balanced data (Table III) and unbalanced data (Table II).

C. Movie

The ‘movie’ data set was a very hard task for the algorithms
to accomplish. They had to select one of 5 classes, based on
a ratings system. Additionally, several different labellers were
shown different segments of the same review. This has lead
to some inconsistency in the labelling, leading to a very noisy
dataset. The results are tabulated (Table IV. To simplify the
task somewhat, a second trial was run, collapsing classes 0
and 1 into a negative class, and classes 3 and 4 into a positive
class. These results are tabulated (Table V).

Due to the multi-class problem of this dataset, the number of
output layers increase to 5, complicating the CNN-RNN model
and resulting in extended times for the training stage. A test
was performed resulting in 42% accuracy, however optimising
parameters was not feasible with our limited computational
power, so this approach was discontinued without obtaining a
full set of test results for populationg either table.

VII. ANALYSIS

A. Preprocessing

Preprocessing led to a minor increase in improvement when
Tf-Idf was used as the encoding, on the ‘toxic’, ‘movie’ and
‘spam’ datasets, for most of the classifiers. However, when
GloVe encoding was used, there was a significant decrease in
performance in the ‘spam’ dataset for every classifier apart
from random forest. This may well be due to the information
lost, that in this smaller data set would be necessary for
extracting the information needed to classify the mail text

correctly. For the ‘toxic’ dataset, preprocessing resulted in
a small (0-2%) increase in improvement for all vectorisers,
whether balanced or not balanced.

B. Balancing

It was strongly the opinion of this group that a balanced
dataset would give a better classification, an opinion with a
good standing in the literature [8], [9]. However, this was not
found to be the case. The ‘toxic’ data set is highly unbalanced,
ca. 89.4% not toxic, but when the dataset was balanced, results
do not improve for any classifier, in fact across the board,
results are either slightly lower (for XGB, CNN-RNN, RF) or
considerably lower (for SVM, LR, NB).

C. Datasets

a) Spam: The spam dataset is a clean dataset, most words
are correctly spelled and in English. The classifiers performed
well on this data set, largely as it is well balanced, 70.1% not
spam, which results in better f1 scores, and classifiers finding
better rules for discrimination.

b) Toxic: The toxic dataset is a rather ‘messy’ dataset,
much of the text has words that are in no dictionary, con-
tain many spelling mistakes, and also contain numbers, IP
addresses, and other information that may make classification
difficult. 89.4% of this data is classified as ‘not toxic’. This
means most results in the table are little better than a dumb
classifier that picks the most common. It has already been
noted that balancing did not improve accuracy, and more
surprisingly, that preprocessing did not improve accuracy.
The best performing algorithm here was the CNN-RNN hy-
brid network (CNN-RNN), using the Tf-Idf vectoriser, on
preprocessed data, but there was less than 2ppts difference
between the CNN-RNN and SVM, LR, and RF (94.3-95.7).
The random forest algorithm was consistently accurate in this
dataset.

c) Movie: The movie dataset was confusing for the
algorithms, with multiple parts from different comments re-
peated, but with different sentiment classifications. These
classifications did not appear to be particularly consistent,
due to the subjective nature of human sentiment. In the
competition the best result was only 76.5 % classification
accuracy, though it is not reported which approach was used to
achieve this. In our work, random forest was consistently the
most accurate classifier, achieving the best results when using
preprocessed data. There was little difference between using
word embeddings or tf-idf for this classifier, and regardless of
the pipeline it scored sufficiently higher than the 51.2% mark
of a dumb classifier.

D. Classifiers

a) SVM: The support vector machine here performed
comparably to other classifiers, however as its hyperparameter
space was only briefly explored, it is possible that it could have
been improved with some more personal attention.

TABLE I
TABLE SHOWING ACCURACY RESULTS ON THE SPAM DATASET, FOR RAW AND PREPROCESSED DATA, USING THREE DIFFERENT ENCODINGS

Spam Tf-Idf word2vec GloVe

Classifier Preprocessed Raw Preprocessed Raw Preprocessed Raw
SVM 94.7 94.3 90.5 82.0 89.1 91.9
LR 94.8 94.3 90.7 83.2 89.2 92.0
NB 94.1 93.0 88.8 71.0 78.9 45.2

LDA 94.1 94.0 89.6 93.4 88.1 91.7
QDA 89.0 89.4 88.3 89.3 83.4 82.8
ADA 90.3 87.2 93.4 77.4 73.8 83.6

CNN-RNN 95.8 94.9 95.3 94.4 96.1 96.5
XGB 73.5 74.3 90.6 89.5 77.9 82.1
RF 94.7 94.3 95.2 93.7 85.8 90.7

TABLE II
TABLE SHOWING ACCURACY RESULTS ON THE UNBALANCED TOXIC DATASET, FOR RAW AND PREPROCESSED DATA, USING THREE DIFFERENT

ENCODINGS

Toxic - Unbalanced Tf-Idf word2vec GloVe

Classifier Preprocessed Raw Preprocessed Raw Preprocessed Raw
SVM 94.3 94.3 93.6 92.7 93.1 92.7
LR 94.3 94.3 93.6 92.8 93.2 92.8
NB 93.8 94.0 90.5 90.5 90.5 90.5

CNN-RNN 95.7 93.7 90.5 85.1 90.5 90.7
XGB 92.3 91.0 92.0 92.0 93.0 92.3
RF 94.2 93.5 94.4 93.5 93.4 92.9

TABLE III
TABLE SHOWING ACCURACY RESULTS ON THE BALANCED ‘TOXIC’ DATASET, FOR RAW AND PREPROCESSED DATA, USING THREE DIFFERENT ENCODINGS

Toxic - Balanced Tf-Idf word2vec GloVe

Classifier Preprocessed Raw Preprocessed Raw Preprocessed Raw
SVM 84.9 84.0 87.6 86.0 86.9 86.6
LR 85.4 84.5 87.4 85.9 86.4 86.2
NB 88.4 88.1 89.3 88.1 84.1 88.1

CNN-RNN 93.9 89.4 92.8 92.8 91.7 91.7
XGB 92.3 93.3 90.3 90.0 87.3 90.0
RF 92.3 91.8 92.6 92.0 92.7 92.1

b) LDA and QDA: Linear discriminant analysis and the
related quadratic discriminant analysis were only used with
the spam data set, as the smallest and simplest of the datasets.
LDA was very similar in accuracy to other algorithms (SVM,
XGB,LR, NB), but QDA was moderately weaker.

c) LR: Logistic regression was quite successful on the
unbalanced toxic data set and the movie dataset when vec-
torised by Tf-Idf, with the same accuracy whether prepro-
cessed or not. It was also successful on the spam dataset, with
all types of vectoriser.

d) NB: Multinomial naive bayes was notably a poor
performer, when GloVe and Word2vec were used, on the spam
and movie datasets.

e) XGB: Extreme gradient boost would not have been
a good algorithm to bet on in this set of tests, as it had the
worst performance in the spam and movie data sets. However,

it performed well on the toxic dataset, on both unbalanced and
balanced data.

f) RF: A good all-round solid performer, quick and
effective. It was the best performer by far in the movie data
set.

VIII. CONCLUSION

In our exploration of different methods of vectorisation,
balancing and preprocessing the clear outcome has been that
simplicity is key. This should not be surprising, but it does
seem that the great lengths that were gone to to clean,
balance and process the text either had a negligible effect,
or was actually detrimental. Tf-Idf, the simplest, was the best
overall vectoriser, preprocessing had little effect, and balancing
was detrimental. The method that had the highest accuracy
across the tasks explored was the CNN-RNN hybrid network,

TABLE IV
TABLE SHOWING ACCURACY RESULTS ON THE ‘MOVIE’ DATASET, FOR RAW AND PREPROCESSED DATA, USING THREE DIFFERENT ENCODINGS

Movie (5 class) Tf-Idf word2vec GloVe

Classifier Preprocessed Raw Preprocessed Raw Preprocessed Raw
SVM 58.8 57.4 52.1 52.2 52.2 53.8
LR 58.8 57.6 52.1 52.1 52.2 53.9
NB 55.7 55.6 51.2 51.2 51.2 51.2

XGB 51.3 51.5 51.7 51.4 51.2 52.6
RF 61.1 59.9 60.1 53.9 59.2 57.3

TABLE V
TABLE SHOWING ACCURACY RESULTS ON THE ‘MOVIE’ DATASET, FOR RAW AND PREPROCESSED DATA, USING THREE DIFFERENT ENCODINGS

Movie (3 class) Tf-Idf word2vec GloVe

Classifier Preprocessed Raw Preprocessed Raw Preprocessed Raw
SVM 64.8 63.3 54.6 55.1 54.1 57.9
LR 64.9 63.7 54.7 55.2 54.4 58.0
NB 61.0 60.5 51.2 51.2 51.2 51.2

XGB 53.4 53.1 54.1 54.8 54.4 59.4
RF 68.4 66.9 68.2 59.6 66.9 65.0

combining the LSTM approach, known to be successful with
text and series based data, with the CNN approach, better
known for images. Support vector machines can be an im-
mensely powerful technique, and though they did not perform
particularly brilliantly here, with more care and attention to
the parameters used, better performances could be elicited.
Random forest was a consistent good performer in these tests,
it coped with all the tasks reasonably well, required very little
tinkering with the parameters, and ran quickly. A combination
of random forest and CNN-RNN hybrid network approaches,
using an adaptive weighting algorithm such as MWUA [12]
may be a fruitful avenue to pursue in getting closer to winning
competitions, and with real data. In real world applications,
where simplicity and time are important, random forest in
combination with other simpler methods would be a good
avenue to explore, for example in spam detection and filtering,
with the ability to adapt and personalise for each email account
being an efficient way to keep performance levels high.

IX. FURTHER WORK

We have tested a wide range of approaches with a good
range of datasets. The best performing algorithms combine a
range of these methods, depending on each method combined
getting different things right in different ways. A good exten-
sion to this work would be finding a good way to compare the
performance on a selected number of datapoints, to see which
methods are more successful on which type, and combining
the different methods accordingly, giving a stronger basis for
prediction. Exploring different methods of balancing data sets
to find one less deleterious to good performance would also
be a good extension to this work, testing it on different data
sets to see what type of data performs better with this different
treatment.

REFERENCES

[1] P. Dangeti, Statistics for Machine Learning: Techniques for Exploring
Supervised, Unsupervised, and Reinforcement Learning Models with
Python and R. Packt Publishing, 2017.

[2] Y. Gal and Z. Ghahramani, “A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks,” ArXiv e-prints, Dec. 2015.

[3] T. Hastie, R. Tibshirani, and J. Friedman, New York, NY, USA.
[4] G. Jigsaw. (2018) Toxic Comment Classification Challenge identify

and classify toxic online comments. [Online]. Available: https:
//www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

[5] Kaggle. (2015) Sentiment Analysis on Movie Reviews classify the senti-
ment of sentences from the rotten tomatoes dataset. [Online]. Available:
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews/data

[6] I. A. V. Metsis and G. Paliouras. Spam filtering. [Online]. Available:
http://csmining.org/index.php/enron-spam-datasets.html

[7] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding, method,” CoRR, vol.
abs/1402.3722, 2014.

[8] A. H. S. Solberg and R. Solberg, in Geoscience and Remote Sensing
Symposium, 1996. IGARSS ’96. ’Remote Sensing for a Sustainable
Future.’, International.

[9] N. Chawla, Data Mining for Imbalanced Datasets: An Overview, 01
2010, vol. 5, pp. 875–886.

[10] L. O. H. W. P. K. Nitesh V. Chawla, Kevin W. Bowyer. (2002) SMOTE
synthetic minority over-sampling technique.

[11] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

[12] E. Chastain, A. Livnat, C. Papadimitriou, and U. Vazirani, “Algorithms,
games, and evolution,” vol. 111, no. 29, pp. 10 620–10 623, 2014.

[13] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” CoRR, vol. abs/1405.4053, 2014. [Online]. Available:
http://arxiv.org/abs/1405.4053

